Metabolic Syndrome > Vitamins

Health Condition

Metabolic Syndrome

  • Anthocyanins

    Taking anthocyanins may help people with metabolic syndrome achieve better blood glucose control and normalize triglyceride and cholesterol levels.

    Dose:

    > 400 mg daily
    Anthocyanins
    ×
    Anthocyanins are pigments found in many berries, as well as in other fruits and vegetables. Findings from a clinical trial in healthy and metabolic syndrome-affected subjects suggest anthocyanin supplementation may improve metabolic function in part by reducing inflammation.10 A meta-analysis of 32 randomized controlled trials, with a total of 1,491 participants with metabolic syndrome or its components, found anthocyanins can improve glucose and lipid metabolism, and may be more effective at doses exceeding 400 mg per day.11
  • Berberine

    Clinical trials have shown berberine can benefit all aspects of metabolic syndrome.

    Dose:

    500 mg three times daily
    Berberine
    ×

    Berberine is an alkaloid found in several medicinal plants, such as goldenseal (Hydrastis canadensis), barberry (Berberis vulgaris), Oregon grape (Mahonia aquifolium), and goldthread (Coptis chinensis). Results from laboratory research and clinical trials indicate berberine may have a positive impact on metabolic disorders including obesity, high cholesterol and triglyceride levels, insulin resistance, high blood glucose levels and type 2 diabetes, and high blood pressure.12,13 Some evidence suggests berberine may help people with metabolic syndrome by stimulating healthy function of adipose (fat) tissue.14,15

    One controlled trial included 80 participants with metabolic syndrome; specifically, all of the participants had high blood pressure, insulin resistance/type 2 diabetes, and high cholesterol and triglyceride levels. All participants were treated conventionally, and half also received berberine at a dose not specified in the published report. After one month, measures of blood glucose control, insulin sensitivity, lipid metabolism, and systemic inflammation had improved more in those given berberine.16 A double-blind, placebo-controlled trial with 24 participants affected by metabolic syndrome found 500 mg of berberine three times daily for three months led to decreased waist circumference, blood pressure, and triglyceride levels, and increased insulin sensitivity.17

  • Cinnamon

    Cinnamon has been shown to improve all aspects of metabolic syndrome.

    Dose:

    1 to 3 grams daily
    Cinnamon
    ×
    Because cinnamon and cinnamon extracts have demonstrated benefits in people with insulin resistance and type 2 diabetes, it has potential benefits in people with metabolic syndrome.18,19 A placebo-controlled trial that included 116 participants with metabolic syndrome found 3 grams of cinnamon per day for 16 weeks improved blood glucose, triglyceride, and cholesterol levels, as well as waist circumference, blood pressure, and blood glucose control.20 In a randomized controlled trial, cinnamon reduced signs of metabolic disease in people with type 2 diabetes: after eight weeks, study participants receiving 3 grams of cinnamon per day had lower blood glucose levels, triglyceride levels, body weight, and body fat, and improved blood glucose control.21 Similarly, in a placebo-controlled trial with 140 participants with diabetes, taking 1 gram of cinnamon daily for three months improved glucose and lipid metabolism and was associated with body fat and weight loss, with stronger effects in those with more severe obesity.22 Placebo-controlled trials in people with type 2 diabetes show cinnamon can reduce high blood pressure in people with metabolic disease.23,24 Furthermore, a meta-analysis of controlled trials showed cinnamon can also reduce high blood pressure, with greatest efficacy when used at a dose of 2 grams per day or less for at least 12 weeks.25
  • Glucomannan

    Taking a glucomannan fiber supplement may improve metabolic syndrome.

    Dose:

    3 to 10 grams daily
    Glucomannan
    ×
    Glucomannan, a type of water-soluble dietary fiber from the root of the konjac plant, may reduce risk factors in people with metabolic syndrome. A double-blind trial found that 8–13 grams per day of glucomannan improved cholesterol levels and blood glucose control in people with metabolic syndrome.26 It is thought to work in part by acting as a prebiotic fiber, enhancing colonies of beneficial gut bacteria that participate in regulating metabolism.27 Even in patients with type 2 diabetes, 3 grams of glucomannan per day for four weeks improved blood glucose control and lipid metabolism compared to placebo.28
  • Green Tea

    Strong evidence indicates green tea and black tea extracts can help individuals with metabolic syndrome reduce body weight, lower blood glucose levels, and raise HDL-cholesterol levels.

    Dose:

    600 to 900 mg of tea catechins daily
    Green Tea
    ×
    Drinking tea has been associated with lower risk of metabolic syndrome, and both green and black tea extracts, as well as the green tea catechin epigallocatechin gallate (EGCG), have demonstrated positive effects in people with metabolic syndrome.29,30 One meta-analysis of six randomized controlled trials involving people with obesity and metabolic syndrome concluded consuming a green tea catechin-rich beverage reduces abdominal fat accumulation and improves metabolic status.31 A large meta-analysis of studies pooled findings from 16 controlled trials with a combined total of 1,090 participants with obesity and metabolic syndrome. The results showed that, while the evidence for green tea extract is stronger than that for black, both green and black tea extracts help lower blood glucose levels, raise HDL (“good”)-cholesterol levels, and reduce body mass index, but have no impact on blood pressure, triglycerides, or other cholesterol levels.32 Most studies finding beneficial metabolic effects used 600–900 mg of tea catechins per day for at least 12 weeks. It is important to note liver toxicity has been associated with the use of very high doses of green tea extracts.30
  • Guar Gum

    Taking a guar gum fiber supplement may improve metabolic syndrome.

    Dose:

    3 to 10 grams daily
    Guar Gum
    ×
    Guar gum, another fiber supplement with similar properties to glucomannan, may also have metabolic benefits. A controlled trial in which subjects with type 2 diabetes and metabolic syndrome were given 10 grams per day of guar gum or placebo found those given guar gum had improved blood glucose control and reduced waist circumference after six weeks.33 Healthy men given the same dose of guar gum for six weeks were also reported to have experienced improvements in aspects of metabolic syndrome, including blood pressure and glucose, cholesterol, and triglyceride levels.34 Another preliminary trial noted taking 4 grams of guar flour twice daily reduced insulin resistance, decreased total and LDL-cholesterol levels, and increased HDL-cholesterol levels in men with type 2 diabetes.35
What Are Star Ratings
×
Reliable and relatively consistent scientific data showing a substantial health benefit.
Contradictory, insufficient, or preliminary studies suggesting a health benefit or minimal health benefit.
For an herb, supported by traditional use but minimal or no scientific evidence. For a supplement, little scientific support.

References

1. Sherling D, Perumareddi P, Hennekens C. Metabolic Syndrome. J Cardiovasc Pharmacol Ther 2017;22:365–7.

2. Saklayen M. The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep 2018;20:12.

3. Zafar U, Khaliq S, Ahmad H, et al. Metabolic syndrome: an update on diagnostic criteria, pathogenesis, and genetic links. Hormones (Athens) 2018;17:299–313.

4. Rojas-Gutierrez E, Munoz-Arenas G, Trevino S, et al. Alzheimer's disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse 2017;71:e21990.

5. Atti A, Valente S, Iodice A, et al. Metabolic Syndrome, Mild Cognitive Impairment, and Dementia: A Meta-Analysis of Longitudinal Studies. Am J Geriatr Psychiatry 2019;27:625–37.

6. Uzunlulu M, Telci Caklili O, Oguz A. Association between Metabolic Syndrome and Cancer. Ann Nutr Metab 2016;68:173–9.

7. Anagnostis P, Tarlatzis BC, Kauffman RP. Polycystic ovarian syndrome (PCOS): Long-term metabolic consequences. Metabolism. 2018;86:33-43.

8. Armani A, Berry A, Cirulli F, Caprio M. Molecular mechanisms underlying metabolic syndrome: the expanding role of the adipocyte. Faseb j 2017;31:4240–55.

9. van Greevenbroek M, Schalkwijk C, Stehouwer C. Dysfunctional adipose tissue and low-grade inflammation in the management of the metabolic syndrome: current practices and future advances. F1000Res 2016;5.

10. Aboonabi A, Meyer R, Singh I, Aboonabi A. Anthocyanins reduce inflammation and improve glucose and lipid metabolism associated with inhibiting nuclear factor-kappaB activation and increasing PPAR-gamma gene expression in metabolic syndrome subjects. Free Radic Biol Med 2020.

11. Yang L, Ling W, Du Z, et al. Effects of Anthocyanins on Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2017;8:684–93.

12. Tabeshpour J, Imenshahidi M, Hosseinzadeh H. A review of the effects of Berberis vulgaris and its major component, berberine, in metabolic syndrome. Iran J Basic Med Sci 2017;20:557–68.

13. Firouzi S, Malekahmadi M, Ghayour-Mobarhan M, et al. Barberry in the treatment of obesity and metabolic syndrome: possible mechanisms of action. Diabetes Metab Syndr Obes 2018;11:699–705.

14. Hu X, Zhang Y, Xue Y, et al. Berberine is a potential therapeutic agent for metabolic syndrome via brown adipose tissue activation and metabolism regulation. Am J Transl Res 2018;10:3322–9.

15. Yang J, Yin J, Gao H, et al. Berberine improves insulin sensitivity by inhibiting fat store and adjusting adipokines profile in human preadipocytes and metabolic syndrome patients. Evid Based Complement Alternat Med 2012;2012:363845.

16. Cao C, Su M. Effects of berberine on glucose-lipid metabolism, inflammatory factors and insulin resistance in patients with metabolic syndrome. Exp Ther Med 2019;17:3009–14.

17. Perez-Rubio K, Gonzalez-Ortiz M, Martinez-Abundis E, et al. Effect of berberine administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Metab Syndr Relat Disord 2013;11:366–9.

18. Mollazadeh H, Hosseinzadeh H. Cinnamon effects on metabolic syndrome: a review based on its mechanisms. Iran J Basic Med Sci 2016;19:1258–70.

19. Shen Y, Jia L, Honma N, et al. Beneficial effects of cinnamon on the metabolic syndrome, inflammation, and pain, and mechanisms underlying these effects - a review. J Tradit Complement Med 2012;2:27–32.

20. Gupta Jain S, Puri S, Misra A, et al. Effect of oral cinnamon intervention on metabolic profile and body composition of Asian Indians with metabolic syndrome: a randomized double -blind control trial. Lipids Health Dis 2017;16:113.

21. Vafa M, Mohammadi F, Shidfar F, et al. Effects of cinnamon consumption on glycemic status, lipid profile and body composition in type 2 diabetic patients. Int J Prev Med 2012;3:531–6.

22. Zare R, Nadjarzadeh A, Zarshenas M, et al. Efficacy of cinnamon in patients with type II diabetes mellitus: A randomized controlled clinical trial. Clin Nutr 2019;38:549–56.

23. Akilen R, Pimlott Z, Tsiami A, Robinson N. Effect of short-term administration of cinnamon on blood pressure in patients with prediabetes and type 2 diabetes. Nutrition 2013;29:1192–6.

24. Wainstein J, Stern N, Heller S, Boaz M. Dietary cinnamon supplementation and changes in systolic blood pressure in subjects with type 2 diabetes. J Med Food 2011;14:1505–10.

25. Mousavi S, Karimi E, Hajishafiee M, et al. Anti-hypertensive effects of cinnamon supplementation in adults: A systematic review and dose-response Meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2019:1–11.

26. Vuksan V, Sievenpiper J, Owen R, et al. Beneficial effects of viscous dietary fiber from Konjac-mannan in subjects with the insulin resistance syndrome: results of a controlled metabolic trial. Diabetes Care 2000;23:9–14.

27. Zheng J, Li H, Zhang X, et al. Prebiotic Mannan-Oligosaccharides Augment the Hypoglycemic Effects of Metformin in Correlation with Modulating Gut Microbiota. J Agric Food Chem 2018;66:5821–31.

28. Chearskul S, Sangurai S, Nitiyanant W, et al. Glycemic and lipid responses to glucomannan in Thais with type 2 diabetes mellitus. J Med Assoc Thai 2007;90:2150–7.

29. Marventano S, Salomone F, Godos J, et al. Coffee and tea consumption in relation with non-alcoholic fatty liver and metabolic syndrome: A systematic review and meta-analysis of observational studies. Clin Nutr 2016;35:1269–81.

30. Yang C, Wang H, Sheridan Z. Studies on prevention of obesity, metabolic syndrome, diabetes, cardiovascular diseases and cancer by tea. J Food Drug Anal 2018;26:1–13.

31. Hibi M, Takase H, Iwasaki M, et al. Efficacy of tea catechin-rich beverages to reduce abdominal adiposity and metabolic syndrome risks in obese and overweight subjects: a pooled analysis of 6 human trials. Nutr Res 2018;55:1–10.

32. Li X, Wang W, Hou L, et al. Does tea extract supplementation benefit metabolic syndrome and obesity? A systematic review and meta-analysis. Clin Nutr 2019.

33. Dall'Alba V, Silva F, Antonio JP, et al. Improvement of the metabolic syndrome profile by soluble fibre - guar gum - in patients with type 2 diabetes: a randomised clinical trial. Br J Nutr 2013;110:1601–10.

34. Landin K, Holm G, Tengborn L, Smith U. Guar gum improves insulin sensitivity, blood lipids, blood pressure, and fibrinolysis in healthy men. Am J Clin Nutr 1992;56:1061–5.

35. Tagliaferro V, Cassader M, Bozzo C, et al. Moderate guar-gum addition to usual diet improves peripheral sensitivity to insulin and lipaemic profile in NIDDM. Diabete Metab 1985;11:380–5.

36. Wojcik J, Aukema H, Zahradka P, Taylor C. Effects of high protein diets on metabolic syndrome parameters. Curr Opin Food Sci 2016;8:43–9.

37. Hruby A, Jacques P. Dietary protein and changes in markers of cardiometabolic health across 20 years of follow-up in middle-aged Americans. Public Health Nutr 2018;21:2998–3010.

38. Campos-Nonato I, Hernandez L, Barquera S. Effect of a High-Protein Diet versus Standard-Protein Diet on Weight Loss and Biomarkers of Metabolic Syndrome: A Randomized Clinical Trial. Obes Facts 2017;10:238–51.

39. Hill A, Harris Jackson K, Roussell M, et al. Type and amount of dietary protein in the treatment of metabolic syndrome: a randomized controlled trial. Am J Clin Nutr 2015;102:757–70.

40. de la Iglesia R, Loria-Kohen V, Zulet M, et al. Dietary Strategies Implicated in the Prevention and Treatment of Metabolic Syndrome. Int J Mol Sci 2016;17.

41. Zhang J, Jiang Y, Liu Y, et al. The association between glycemic index, glycemic load, and metabolic syndrome: a systematic review and dose-response meta-analysis of observational studies. Eur J Nutr 2019.

42. Shahdadian F, Saneei P, Milajerdi A, Esmaillzadeh A. Dietary glycemic index, glycemic load, and risk of mortality from all causes and cardiovascular diseases: a systematic review and dose-response meta-analysis of prospective cohort studies. Am J Clin Nutr 2019;110:921–37.

43. Cano-Ibanez N, Bueno-Cavanillas A, Martinez-Gonzalez M, et al. Effect of changes in adherence to Mediterranean diet on nutrient density after 1-year of follow-up: results from the PREDIMED-Plus Study. Eur J Nutr 2019.

44. Franquesa M, Pujol-Busquets G, Garcia-Fernandez E, et al. Mediterranean Diet and Cardiodiabesity: A Systematic Review through Evidence-Based Answers to Key Clinical Questions. Nutrients 2019;11.

45. Carlos S, De La Fuente-Arrillaga C, Bes-Rastrollo M, et al. Mediterranean Diet and Health Outcomes in the SUN Cohort. Nutrients 2018;10.

46. Kargin D, Tomaino L, Serra-Majem L. Experimental Outcomes of the Mediterranean Diet: Lessons Learned from the Predimed Randomized Controlled Trial. Nutrients 2019;11.

47. Pavic E, Hadziabdic M, Mucalo I, et al. Effect of the Mediterranean diet in combination with exercise on metabolic syndrome parameters: 1-year randomized controlled trial. Int J Vitam Nutr Res 2019;89:132–43.

48. Gepner Y, Shelef I, Komy O, et al. The beneficial effects of Mediterranean diet over low-fat diet may be mediated by decreasing hepatic fat content. J Hepatol 2019;71:379–88.

49. Santulli G, Pascale V, Finelli R, et al. We are What We Eat: Impact of Food from Short Supply Chain on Metabolic Syndrome. J Clin Med 2019;8.

50. Clifton P. Metabolic Syndrome-Role of Dietary Fat Type and Quantity. Nutrients 2019;11.

51. Julibert A, Bibiloni M, Bouzas C, et al. Total and Subtypes of Dietary Fat Intake and Its Association with Components of the Metabolic Syndrome in a Mediterranean Population at High Cardiovascular Risk. Nutrients 2019;11.

52. Drehmer M, Pereira MA, Schmidt MI, et al. Total and Full-Fat, but Not Low-Fat, Dairy Product Intakes are Inversely Associated with Metabolic Syndrome in Adults. J Nutr 2016;146:81–9.

53. Unger A, Torres-Gonzalez M, Kraft J. Dairy Fat Consumption and the Risk of Metabolic Syndrome: An Examination of the Saturated Fatty Acids in Dairy. Nutrients 2019;11.

54. Kim Y, Xun P, Iribarren C, et al. Intake of fish and long-chain omega-3 polyunsaturated fatty acids and incidence of metabolic syndrome among American young adults: a 25-year follow-up study. Eur J Nutr 2016;55:1707–16.

55. Liu Y, Wu Q, Xia Y, et al. Carbohydrate intake and risk of metabolic syndrome: A dose-response meta-analysis of observational studies. Nutr Metab Cardiovasc Dis 2019;29:1288–98.

56. Hashimoto Y, Tanaka M, Miki A, et al. Intake of Carbohydrate to Fiber Ratio Is a Useful Marker for Metabolic Syndrome in Patients with Type 2 Diabetes: A Cross-Sectional Study. Ann Nutr Metab 2018;72:329–35.

57. Hyde P, Sapper T, Crabtree C, et al. Dietary carbohydrate restriction improves metabolic syndrome independent of weight loss. JCI Insight 2019;4.

58. Gershuni V, Yan S, Medici V. Nutritional Ketosis for Weight Management and Reversal of Metabolic Syndrome. Curr Nutr Rep 2018;7:97–106.

59. Cicero A, Benelli M, Brancaleoni M, et al. Middle and Long-Term Impact of a Very Low-Carbohydrate Ketogenic Diet on Cardiometabolic Factors: A Multi-Center, Cross-Sectional, Clinical Study. High Blood Press Cardiovasc Prev 2015;22:389–94.

60. Paoli A, Mancin L, Bianco A, et al. Ketogenic Diet and Microbiota: Friends or Enemies? Genes (Basel) 2019;10.

61. Caprio M, Infante M, Moriconi E, et al. Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: systematic review and consensus statement from the Italian Society of Endocrinology (SIE). J Endocrinol Invest 2019;42:1365–86.

62. Kosinski C, Jornayvaz F. Effects of Ketogenic Diets on Cardiovascular Risk Factors: Evidence from Animal and Human Studies. Nutrients 2017;9.

63. Noto H, Goto A, Tsujimoto T, Noda M. Low-carbohydrate diets and all-cause mortality: a systematic review and meta-analysis of observational studies. PLoS One 2013;8:e55030.

64. Seidelmann S, Claggett B, Cheng S, et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health 2018;3:e419–28.

65. Smith GI, Mittendorfer B, Klein S. Metabolically healthy obesity: facts and fantasies. J Clin Invest 2019;129:3978–89.

66. Tajik S, Mirzababaei A, Ghaedi E, et al. Risk of type 2 diabetes in metabolically healthy people in different categories of body mass index: an updated network meta-analysis of prospective cohort studies. J Cardiovasc Thorac Res 2019;11:254–63.

67. Cao Q, Yu S, Xiong W, et al. Waist-hip ratio as a predictor of myocardial infarction risk: A systematic review and meta-analysis. Medicine (Baltimore) 2018;97:e11639.

68. Engin A. The Definition and Prevalence of Obesity and Metabolic Syndrome. Adv Exp Med Biol 2017;960:1–17.

69. Ryan D, Yockey S. Weight Loss and Improvement in Comorbidity: Differences at 5%, 10%, 15%, and Over. Curr Obes Rep 2017;6:187–94.

70. Gallardo-Alfaro L, Bibiloni M, Mateos D, et al. Leisure-Time Physical Activity and Metabolic Syndrome in Older Adults. Int J Environ Res Public Health 2019;16.

71. Grazioli E, Dimauro I, Mercatelli N, et al. Physical activity in the prevention of human diseases: role of epigenetic modifications. BMC Genomics 2017;18:802.

72. Joseph M, Tincopa M, Walden P, et al. The Impact Of Structured Exercise Programs On Metabolic Syndrome And Its Components: A Systematic Review. Diabetes Metab Syndr Obes 2019;12:2395–404.

73. Myers J, Kokkinos P, Nyelin E. Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome. Nutrients 2019;11.

74. Wewege M, Thom J, Rye K, Parmenter B. Aerobic, resistance or combined training: A systematic review and meta-analysis of exercise to reduce cardiovascular risk in adults with metabolic syndrome. Atherosclerosis 2018;274:162–71.

75. Ostman C, Smart N, Morcos D, et al. The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: a systematic review and meta-analysis. Cardiovasc Diabetol 2017;16:110.

76. Bergmann N, Gyntelberg F, Faber J. The appraisal of chronic stress and the development of the metabolic syndrome: a systematic review of prospective cohort studies. Endocr Connect 2014;3:R55–80.

77. Ortiz M, Sapunar J. Longitudinal association between chronic psychological stress and metabolic syndrome. Rev Med Chil 2018;146:1278–85.

78. Morera L, Marchiori G, Medrano L, Defago M. Stress, Dietary Patterns and Cardiovascular Disease: A Mini-Review. Front Neurosci 2019;13:1226.

79. Onyango A. Cellular Stresses and Stress Responses in the Pathogenesis of Insulin Resistance. Oxid Med Cell Longev 2018;2018:4321714.

80. Chan K, Cathomas F, Russo S. Central and Peripheral Inflammation Link Metabolic Syndrome and Major Depressive Disorder. Physiology (Bethesda) 2019;34:123–33.

81. Daubenmier J, Moran P, Kristeller J, et al. Effects of a mindfulness-based weight loss intervention in adults with obesity: A randomized clinical trial. Obesity (Silver Spring) 2016;24:794–804.

82. Daubenmier J, Kristeller J, Hecht F, et al. Mindfulness Intervention for Stress Eating to Reduce Cortisol and Abdominal Fat among Overweight and Obese Women: An Exploratory Randomized Controlled Study. J Obes 2011;2011:651936.

83. Artese A, Stamford B, Moffatt R. Cigarette Smoking: An Accessory to the Development of Insulin Resistance. Am J Lifestyle Med 2019;13:602–5.

84. Frigerio B, Werba J, Amato M, et al. Traditional Risk Factors are Causally Related to Carotid Intima-Media Thickness Progression: Inferences from Observational Cohort Studies and Interventional Trials. Curr Pharm Des 2019.

85. Yankey B, Strasser S, Okosun I. A cross-sectional analysis of the association between marijuana and cigarette smoking with metabolic syndrome among adults in the United States. Diabetes Metab Syndr 2016;10:S89–95.

86. Ponciano-Rodriguez G, Paez-Martinez N, Villa-Romero A, et al. Early changes in the components of the metabolic syndrome in a group of smokers after tobacco cessation. Metab Syndr Relat Disord 2014;12:242–50.

87. Song Y, Chang W, Hsu H, Chen M. A short-term smoking cessation may increase the risk of developing metabolic syndrome. Diabetes Metab Syndr 2015;9:135–7.

88. Eliasson B, Taskinen M, Smith U. Long-term use of nicotine gum is associated with hyperinsulinemia and insulin resistance. Circulation 1996;94:878–81.

89. Boyle M, Masson S, Anstee Q. The bidirectional impacts of alcohol consumption and the metabolic syndrome: Cofactors for progressive fatty liver disease. J Hepatol 2018;68:251–67.

90. Mahli A, Hellerbrand C. Alcohol and Obesity: A Dangerous Association for Fatty Liver Disease. Dig Dis 2016;34 Suppl 1:32–9.

91. Aberg F, Farkkila M, Mannisto V. Interaction Between Alcohol Use and Metabolic Risk Factors for Liver Disease: A Critical Review of Epidemiological Studies. Alcohol Clin Exp Res 2020;44:384–403.

92. Du D, Bruno R, Dwyer T, et al. Associations between alcohol consumption and cardio-metabolic risk factors in young adults. Eur J Prev Cardiol 2017;24:1967–78.

93. Hirakawa M, Arase Y, Amakawa K, et al. Relationship between Alcohol Intake and Risk Factors for Metabolic Syndrome in Men. Intern Med 2015;54:2139–45.

94. Huang J, Wang X, Zhang Y. Specific types of alcoholic beverage consumption and risk of type 2 diabetes: A systematic review and meta-analysis. J Diabetes Investig 2017;8:56–68.

95. Piano M. Alcohol's Effects on the Cardiovascular System. Alcohol Res 2017;38:219–41.